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Abstract 21 

Fish stocks fluctuate both in abundance and productivity (net population 22 

increase), and there are many examples demonstrating that productivity increased or 23 

decreased due to changes in abundance caused by fishing and, alternatively, where 24 

productivity shifted between low and high regimes, entirely unrelated to abundance.  25 

While shifts in productivity regimes have been described,  their frequency and intensity  26 

have not previously been assessed. We use a data base of trends in harvest and abundance 27 

of 230 fish stocks to evaluate, for the first time, the proportion of fish stocks whose 28 

productivity is primarily related to abundance vs. those who appear to manifest regimes 29 

of high or low productivity.  We evaluated the statistical support for four hypotheses:  (1) 30 

the Abundance Hypothesis, where production is always related to population abundance, 31 

(2) the Regimes Hypothesis, where production shifts irregularly between regimes that are 32 

unrelated to abundance, (3) the Mixed Hypothesis, where, even though production is 33 

related to population abundance, there are irregular changes in this relationship,  and (4) 34 

the Random Hypothesis, where production is random from year to year.  We found that 35 

the Abundance Hypothesis best explains  18.3% of stocks, the Regimes Hypothesis  36 

38.6%, the Mixed Hypothesis 30.5%,  and the Random Hypothesis 12.6%.  Fisheries 37 

management agencies need to recognize that irregular changes in productivity are 38 

common and that harvest regulation and management targets may need to be adjusted 39 

whenever productivity changes.  40 

41 
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 42 

\body 43 

Introduction  44 

Modern fisheries management is predicated on a repeatable relationship between 45 

stock size and the long term yield of fish stocks (1), and that population production (and 46 

thus, long term yield) is best served by holding stocks within a specific range of 47 

abundance.  In the U.S. and some other developed countries, stocks are classified as 48 

overfished when their abundance falls below this target range.  At that point, fishing 49 

pressure is reduced to rebuild stocks to levels that are thought to produce long term 50 

maximum sustainable yield (2).  Many other national and international fishery 51 

management organizations have adopted similar approaches.  52 

However, fish stock production often shifts between high and low productivity 53 

regimes unrelated to population size (3-6).  Mullon et al. (7) explored the pattern of 54 

fisheries collapses and concluded that there were often patterns “that seem to reflect 55 

interdecadal pseudoperiodic variability which remains largely unexplained.”  This 56 

pseudoperiodic variability could arise from a broad range of ecological factors including 57 

changes in predator, prey or competitor abundance, or changes in physical habitats.  We 58 

term this variability “productivity regimes” not to be equated or confused with the 59 

physical oceanographic regime shifts such as the Pacific Decadal Oscillation (8). One 60 

well-known example of such shifts in productivity is the collapse of Northwest Atlantic 61 

cod stocks, which, for several of these stocks, was preceded by a sharp decline in 62 

productivity at relatively high abundance (9-11).  There has been substantial debate about 63 

the causes and consequences of productivity regimes across a range of fish stocks, but no 64 
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systematic attempt has been made to assess the frequency and intensity of changes in 65 

productivity regimes.       66 

 Despite the dramatic example of the cod collapse and the rise of non-equilibrium 67 

or multiple-equilibrium perspectives in ecology (12), fisheries management is still based 68 

largely on a single equilibrium worldview.  Within this paradigm,  inter-annual 69 

fluctuations of vital rates (and thus productivity) are centered on a stationary mean, and 70 

under a fixed harvest rate populations vary around a long-term equilibrium.   This 71 

paradigm, and alternatives that include regime changes in productivity, and random 72 

productivity, should be challenged with data.   73 

If changes in productivity were generally unrelated to abundance,  this would 74 

have significant consequences for fisheries management.  First, one of the primary 75 

economic arguments for rebuilding overfished stocks would be negated;  if greater 76 

population biomass is not associated with higher sustainable harvests, then there is much 77 

less economic reward to offset the cost (in forgone harvest) of rebuilding. Even though 78 

there are often other reasons that larger stock sizes and low fishing pressure provide 79 

economic or ecological benefits (13), a major argument for rebuilding depleted stocks has 80 

been the promise of higher sustained yield in the future.  Second, if fish populations 81 

experience substantial shifts in productivity unrelated to stock size, then management 82 

based on a single set of management targets (e.g., maximum sustainable yield) will be 83 

either inefficient or risky.  If the targets are based on a higher productivity regime, then a 84 

shift to low productivity regime will result in increased risk of overfishing.  Conversely, 85 

management targets based on a lower productivity phase will result in overly cautious 86 

harvest during regimes of high productivity. 87 



   

 5  

There was a lively debate about the relationship between population size and 88 

resulting number of young fish that began in 1950 and lasted into the 1990s.  Many 89 

argued that there was little relationship between the two and fishing down stocks to low 90 

abundance did not lower the number of new fish that subsequently entered the population 91 

(recruitment) (14).  In the 1990s,  Myers used several hundred data sets of stock size and 92 

recruitment to show there was indeed a statistical relationship between the two – very low 93 

abundance begat lower recruitment (15, 16).  Gilbert (6) challenged Myers’ conclusions 94 

and argued that the apparent relationship between stock size and recruitment was often 95 

spurious.  Periods of high and low recruitment that are unrelated to abundance result in 96 

high stock size during high recruitment and low stock size during low recruitment.   97 

Gilbert noted that in many of Myers’ data sets recruitment dropped to low levels even 98 

though stock sizes were high, and it is the low recruitment that causes the decline in stock 99 

size rather than the other way around.   100 

The production of sustainable yield depends not only on recruitment but also on 101 

the growth of young fish and survival from natural mortality.  To understand changes in 102 

productivity we need to look at all three processes.  Surplus production, the net change in 103 

biomass from one year to the next in the absence of fishing, incorporates recruitment, 104 

growth and natural mortality and can easily be calculated from available fish stock 105 

assessments (17).   106 

Worm et al. (18) assembled a data base with the history of abundance and catch 107 

from published assessments that now includes 355 stocks (19).  There is sufficient 108 

information on 230 stocks in these data to calculate the history of surplus production for 109 

each year, defined as the change in total biomass plus the catch for the year.  We pose 110 
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four competing hypotheses: (1) the Abundance Hypothesis, where production is always 111 

related to population abundance through a biomass dynamics model, (2) the Regimes 112 

Hypothesis, where production shifts irregularly between high and low productivity 113 

regimes that are unrelated to abundance, (3) the Mixed Hypothesis, where, even though 114 

production is related to population abundance, there are irregular changes in this 115 

relationship,  and (4) the Random Hypothesis, where production is random from year to 116 

year and not explained either by productivity regime changes or population abundance.  117 

These four models can best be thought of as broad classes of models, imbedded within 118 

each is a range of different ecological relationships and processes that could lead to the 119 

dynamics described by the model.  Our fundamental question is how frequently does each 120 

hypothesis provide the best explanation for the changes in observed production. The 121 

statistical support for each hypothesis was assessed using AICc, and simulation tests were 122 

also performed to evaluate the robustness and bias of the model selection criteria used 123 

here. 124 

Results 125 

Using a “winner takes all” approach, for 18.3% of stocks, production was best explained 126 

by the abundance hypothesis (e.g., Kattegat and Skagerrak cod, Fig. 1A-C), 38.6% of 127 

stocks are best explained by regimes (e.g., Icelandic cod, Fig. 1D-F). For 30.5% of 128 

stocks, production was best explained by the mixed hypothesis (e.g., Petrale sole from 129 

Southern California, Fig. 1G-I),, and for 12.6% of stocks the random hypothesis received 130 

most support (e.g., Common sole in the Kattegat and Skagerrak, Fig. 1J-L). Using the 131 

“relative support” approach where AICc weights are summed for each hypothesis, the 132 

relative support for the four hypotheses was similar to the winner takes all approach  133 
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(Table 1),  with 16.1% for abundance,  41.3% for the regimes hypothesis, 28.3% for the 134 

mixed hypothesis, and 14.3% for the random hypothesis.  135 

Results from simulation testing of the hypothesis testing statistics suggest that 136 

there is a slight tendency to over-classify stocks as being from the regimes and random 137 

hypotheses and to under-classify stocks as being from the abundance and the mixed 138 

hypotheses  (Table 2). Nevertheless,  models that include shifts in regimes in production 139 

between high and low states, either with or without an abundance effect (regimes and 140 

mixed models),  constitute 72% of the stocks after adjusting for estimation bias, 141 

compared to 69% before the correction (Table 1).  For the mixed hypothesis 80% of the 142 

variation in production explained by the model is attributed to the changes in the 143 

productivity relationship,  and only 20% due to changes in abundance. 144 

It is possible that model selection is dependent on the intensity of exploitation.  145 

For instance, if a stock has never been intensively exploited or it has not varied over a 146 

significant range of stock sizes, then we would not expect abundance to explain 147 

differences in production.  We classified stocks into four categories of abundance -  148 

collapsed,  overfished,  fully exploited, and developing - based on the ratio of their 149 

abundance in the last year of the time series to the abundance at maximum sustainable 150 

yield.  Contrary  to expectation, the proportion of stocks best explained by the abundance 151 

hypothesis is actually lower for collapsed and overfished stocks (14% and 10% 152 

respectively) than for stocks that are less depleted (22% for fully exploited and 13% for 153 

developing).  Also, there is no significant relationship between historical variability in 154 

abundance and proportion of stocks explained by alternative models. 155 
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We identified a total of 314 productivity shifts  from the 160 stocks where the 156 

preferred model included changes in productivity (regimes and mixed). We calculated the 157 

relative change in production as the absolute change (in tonnes) between high and low 158 

productivity periods divided by the average production across all years for that stock.  159 

We found that positive changes were as common as negative ones (160 increases vs. 154 160 

declines, Fig. 2). The bimodality in Figure 2 is due to the fact that the algorithm for 161 

selecting changes does not readily identify small changes. 162 

Discussion 163 

Caddy and Gulland (20) suggested that the production of fish stocks could be 164 

divided into four classes, regular, cyclical, irregular and spasmodic and that “To be 165 

successful, fishery assessment and management must take these patterns into  account.”  166 

Caddy and Gulland’s regular stocks were characterized by repeatable relationships 167 

between stock size and production.  Our analysis suggests that these “regular” stocks are 168 

only about ¼ of all the fish stocks for which we have data. 169 

Fisheries management in the U.S., and increasingly elsewhere, uses biomass as  170 

management targets and consequently will reduce exploitation when stock sizes decline 171 

and generally will attempt to stop all directed harvesting when stocks reach low 172 

abundance.  Exploitation and biomass targets are primarily designed to maintain the stock 173 

biomass in a range that will produce maximum sustained yield.  Increasingly, however, 174 

these targets are being shifted toward higher biomass to increase profit and lower fishing 175 

effort to reduce ecosystem impact (21).  Conventional wisdom and scientific and political 176 

expectations tell us that maintaining these levels of biomass will assure  production of the 177 
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stocks.  In the same vein, the population abundance hypothesis predicts that if we lower 178 

the catch to rebuild stocks, higher sustainable harvests will follow once stocks are rebuilt.   179 

However, if the production of a stock is determined by productivity regimes and 180 

stock assessments do not account for the shift in productivity, then the underlying 181 

management theory with respect to sustainable yield is incorrect.  In this case, holding 182 

stocks at high levels of abundance and rebuilding depleted stocks will not necessarily 183 

result in increased yields in the future.  While the economic and environmental benefits 184 

of rebuilding abundance and reducing fishing pressure are certainly valid,  the benefits of 185 

increasing abundance are significantly changed. 186 

In current U.S. management, the allowable catches of many species are limited by 187 

incidental catch of stocks that are under rebuilding plans.  Current legal mandates to 188 

include many more species in the regulatory system, combined with the overfishing 189 

definitions and rebuilding requirements, suggest that existing fisheries will be 190 

increasingly constrained and limited by stocks that are at low abundance.  Our analysis 191 

suggests that many stocks will be at low abundance because of shifts in production.  192 

Thus, unless the management system changes or we greatly improve our ability to target 193 

individual species,  current legal mandates will likely lead to major reductions in fisheries 194 

yields. 195 

However, when production changes from high to low, the catch must be lowered. 196 

Stocks in low production regimes cannot support the same yield as stocks in high 197 

production regimes. Theoretical studies have suggested that the best approach to 198 

fluctuating production may be to harvest a constant fraction of the stock that is 199 

determined by averaging across the range of production (22, 23) or to adjust the 200 
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exploitation rate based on recent recruitment (24, 25).  All these studies found that rigid 201 

harvest control rules that dramatically lower exploitation rates at low population sizes 202 

sacrifice a significant amount of harvest. 203 

Oceanographic regime shifts have been identified as important drivers of fish 204 

production in many regions, including the North Pacific (8), Tropical Pacific (26) and 205 

North Atlantic (27).  However, we have found no obvious correlation between oceanic 206 

regime shifts and changes in productivity of individual stocks.  Changes in a single 207 

stock’s productivity can be due to a wide range of factors influencing recruitment, 208 

survival or growth.  Each of these may be influenced both by physical changes in the 209 

environment as well as changes associated with food, competitors or predators.   Since 210 

we know from the long term historical record that fish stocks fluctuate considerably in 211 

abundance in the absence of fishing (5, 28), it should be expected that changes in 212 

abundance or predators and prey of any species would lead to changes in their 213 

productivity.  It is not at all clear that one should expect a direct causal relationship 214 

between physical changes associated with oceanic regime shifts and shifts in productivity 215 

of fish stocks 216 

Each of our four models describes a general class of behavior that can arise from 217 

a wide variety of mechanisms.  For instance the regimes or mixed models could result 218 

from a major change in prey or predator abundance and the impact of prey and predators 219 

on recruitment, growth and survival could be explicitly modeled.  A wide range of such 220 

models could generate what we interpret as shifts in productivity.  Ecologists have long 221 

used such general models (for instance the logistic growth model) that incorporate a wide 222 

range of mechanisms that have similar population level consequences.  The logistic 223 
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growth model, for instance can represent density dependence in births, survival or 224 

individual growth rates.  It also seems likely that shifts in productivity are not necessarily 225 

step functions, but might occur more gradually.  Our regimes and mixed models are 226 

simplifications necessary to confine our analysis to a manageable number of competing 227 

hypotheses.   228 

The stock assessment database on which this analysis is based is a non-random 229 

sample of fish populations (19) and is dominated by heavily exploited stocks.  The biases 230 

this might create, however, would generally be in the opposite direction of the observed 231 

results. Heavily exploited stocks presumably have undergone more declines in abundance 232 

than lightly exploited stocks and thus provide more contrast that the population 233 

abundance model must explain. Stock assessments are generally more available for 234 

developed countries, and under-represent fish populations in tropical regions. 235 

Future work should evaluate a wide range of harvest strategies for robustness to 236 

uncertainty in the basic causes of production.  Additional work should also look to the 237 

physical and biological factors that explain the changes in production and examine 238 

patterns of covariance (positive or negative) in productivity across populations (29, 30)  239 

or species (31) in an ecosystem.  Although there may be little that fishery managers can 240 

do to avert shifts to a lower productivity state, improved methods for early detection of 241 

such shifts (32) may permit managers to reduce harvest in time to avoid collapse.  242 
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Methods  243 

Data  244 

Time series of biomass, catch and fishing rate were extracted from the RAM 245 

Legacy Stock Assessment Database (19) for 355 stocks on December 10th 2010.   Only 246 

279 stocks had no missing data points within the time series, thus were initially selected 247 

for analysis. A total of 49 of the 279 data sets were excluded from the analysis for the 248 

following reasons; for 8 stocks the units of biomass and catch were not in the same units, 249 

24 stocks had a time series of less than 20 years and for 17 stocks the estimated stock 250 

total biomass was the result of a deterministic model and was by definition a function of 251 

stock biomass. The analysis was thus completed with 230 stocks.  252 

Alternative models considered 253 

Surplus production is defined as the net change in biomass, plus harvest (17).  254 

(1)          tttt CBBS +−= +1  255 

Where St  is the surplus production over year t; Bt is the stock total biomass at time t; and 256 

Ct is the catch removed between times t and t+1. 257 

To test if surplus production is related to biomass, a Fox surplus production model 258 

(33) was fitted to the data. The Fox model was chosen rather than the more well-known 259 

Schaefer (logistic) model as recent meta-analysis has determined that the shape of the 260 

productivity vs. biomass relationship is closer to that specified in the Fox model (34).  261 

The Fox model can be written as (35): 262 

(2)          















−=

∞∞ B
B

B
BemS tt

t ln
^

 263 
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Where  is the predicted surplus production over year t;  is the carrying capacity; and 264 

m is the maximum sustainable yield and e is the base of the Naperian logarithm (2.718). 265 

Productivity shifts are defined for our use as the change in surplus production 266 

from one state to another. For the regimes hypothesis, the challenge is to estimate the 267 

years when the productivity shifted (called break-points). We used the sequential t-test 268 

analysis of regime shifts (STARS) (36, 37), which has been widely used in similar 269 

applications (25). The STARS method estimates a series of break points that mark the 270 

first year of each flip in productivity.  In general, this method involves searching over all 271 

possible breakpoints, using the Student’s t-test to identify candidate breakpoints by 272 

testing for a significant change in the mean value of the time series, and then reevaluating 273 

these candidate points in the context of all other break points. This algorithm is described 274 

in detail by (36). The predicted surplus production for each year within regime i is simply 275 

the average surplus production during that regime. 276 

(3)         
ii

f

fj
j

i ff

S
S

i

i

−
=

+

−

=
∑
+

1

11

 277 

Where fi  is the first year of period i; is the predicted average surplus production in 278 

period i; is the surplus production in year j. 279 

The mixed model combines the effect of the biomass on the stock and 280 

productivity shifts. For the mixed model, the estimated years at which break-points 281 

happened were determined using the regimes model. To test if surplus production is 282 

related to biomass and productivity shifts, a productivity shifting surplus production 283 

model was fitted to the data. It assumes that carrying capacity is time independent, but 284 

^

tS ∞B

iS

jS
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maximum sustainable yield is shifting between alternative regimes states thus the 285 

exploitation rate that produces maximum sustainable yield shifts between higher and 286 

lower values.  287 

(4)        















−=

∞∞ B
B

B
BemS tt

it ln
^

 288 

mi is the maximum sustainable yield in each period i; 289 

The random production model assumes that the variability in the data is neither 290 

explained by fishing nor by changes in productivity so the predicted surplus production in 291 

any year is simply the average surplus production over all years. 292 

(5)       
y

S
S

y

t
t

t

∑
== 1

^
 293 

Parameter estimation 294 

For all models, the set of parameters that maximizes the likelihood was found by 295 

assuming process error and the observed surplus production is normally distributed: 296 

(6)     ∏








−

−
==








t

SS tt

eLSL 2

2^

2
^

2
1| σ

πσ
θ  297 

Where is the predicted surplus production under each model for year t;   is the 298 

standard deviation of the surplus production about the model-prediction, 𝜃� are the 299 

parameters for each model.  300 

The parameters ( , m, and σ) of the Fox model were estimated by nonlinear 301 

function minimization in AD Model Builder (ADMB) v10.1 (http://admb-project.org/). 302 

σ

∞B
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Parameters of the regimes model (  , fi, σ) were estimated using a sequential t-303 

test analysis in R with two “tuning parameters” used as inputs: the minimum duration of 304 

a regime, known as “cut-off-length” and the significance level for the t-tests. We used a 305 

cut-off-length of 10 years and the significance level for the t-test of 0.1. Thus, the shifts 306 

are more likely to be at least a decade long although the algorithm often chose shorter 307 

regimes at the beginning and end of the time series. Once the break points were 308 

determined the average production during each period was calculated and the value of σ 309 

determined analytically.  310 

The parameters ( , im , and σ) of the Mixed model were estimated by nonlinear 311 

function minimization in ADMB v10.1 using the break points estimated in the regimes 312 

model. 313 

For the random model, the average production was calculated from equation 5 314 

and σ was determined analytically. 315 

Model selection 316 

The comparison of the four models used the Akaike Information Criterion 317 

corrected for small sample size (AICc)(38)  which identified the most parsimonious 318 

model. AICc weights were also calculated and can be interpreted as the relative support 319 

of data for each model (39). The AICc was calculated as:  320 

(7)     ( )
1

122)log(2
−−
+

++−=
kN

kkkLAICc  321 

Where 322 

L is the likelihood of the data given the parameters; 323 

iS

∞B
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k is the number of parameters; 324 

N is the number of data points. 325 

The preferred model is the one with the lowest AICc. 326 

The Fox model has three parameters (m, ∞B   and ).  The number of parameters 327 

in the regimes model varies, with  one parameter for the average surplus production 328 

during each period, one parameter for each breakpoint and the value of   . The mixed 329 

model has one parameter for each break point, one parameter for each m, and two 330 

additional parameters ∞B  and .  The null model has two parameters, the average surplus 331 

production and . To calculate the AICc weights, we first calculate the difference 332 

between the best model and each model i ( i∆ ). 333 

(8)   ( )AICcAICcii min−=∆  334 

The weights for each model (wi) were calculated from the . 335 

(9)    
∑
=

∆−

∆−

= 4

1

5.0

5.0

j

i
j

i

e

ew  336 

Figure 1 shows examples of data sets where each of the alternative models was 337 

preferred. 338 

Testing of the methods 339 

To verify the reliability of the model selection method and correct for any mis-340 

classification, four simulation-based evaluations were run using data generated from the 341 

abundance, the regimes, the mixed and the random model and then subject to evaluation 342 

i∆
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using each of these four models. The simulation procedure is described below using 343 

process errors. 344 

Data sets were generated for each of the four hypotheses.  For each simulation the 345 

parameters were drawn from stocks that were best explained by the particular underlying 346 

hypothesis.  Thus, we selected data from 37 stocks for the abundance model, 95 stocks 347 

for the regimes model, 33 for the random model and 65 for the mixed model. Then for 348 

each stock 20 stochastic replicate data sets were generated. The initial biomass of each 349 

simulation was the value of the initial biomass in the first year of the data set. The 350 

exploitation rate Ut for every year was calculated from the data used in our analysis.  351 

(10)   
t

t
t B

CU =  352 

Where 353 

is the exploitation rate at time t. 354 

The biomass was simulated for the Fox model using equation 11. 355 

(11)    





−














+





















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


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t
tt UB

B
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B
BemBB

~~
~~

~~

1 ln ε  356 

Where  357 

is the simulated biomass at time t+1; 358 

m  is  the maximum sustainable yield obtained by fitting the Fox model;  359 

is the carrying capacity obtained by fitting the Fox model; 360 

tU

1

~

+tB

∞B



   

 18  

 is normal process error; ; 361 

 is the parameter obtain by fitting the Fox model. 362 

The biomass for the regimes and random models was calculated from equation 363 

12. 364 

(12)   

ttt

ttttt

UBC

CSBB

~~

~~^~~

1

=

−





 ++=+ ε

 365 

where  366 

is the predicted values obtain by fitting the regimes model or random model. 367 

The biomass was simulated for the mixed model using equation 13 368 

(13)   
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where 370 

im is the maximum sustainable yield  for period i obtained by fitting the mixed model; 371 

∞B is the carrying capacity obtained by fitting the mixed model; 372 

~
ε  is normal process error; ( )σε ,0~

~
N ; 373 

σ  is the parameter obtain by fitting the mixed model. 374 

~
ε ( )σε ,0~

~
N

tS
^
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Given the new series of 𝐶̃ and 𝐵� , the surplus production from the simulated data 375 

was calculated, using equation 1.  376 

The random, the regimes, the mixed and abundance models were fitted to the 377 

simulated series of surplus production and AICc was used to select a best model for each 378 

data set. The “classification rate” was calculated as the number of stocks best explained 379 

by each model divided by the number of stocks simulated. Thus, we obtain a four by four 380 

matrix (Table 2) of the classification rates, Eij,  where i is the true model and j is the 381 

model selected by AICc. 382 

The classification matrix can then be used to solve for the vector model 383 

proportions (pi) that would result in the observed proportions (𝑝𝚤� ) by nonlinear search 384 

over pi to minimize the difference between observed and predicted jp̂
 385 

(14)  ∑=
i

ijij Epp
^

 386 

We found that the estimated true proportion (pi) as 27% abundance,  24% 387 

regimes, 45% mixed and 4% random.   388 

  389 



   

 20  

390 



   

 21  

 391 

Acknowledgements.  This work was supported by the National Science Foundation and 392 

NOAA through the CAMEO (grant numbers 1041570 and 1041678).  The authors thank 393 

Ana Parma, Brandon Chasco, Trevor Branch and Ulrike Hilborn for assistance during 394 

this work.  395 

Author Contributions K.V-P. did the majority of analysis with the assistance of O.J., 396 

R.A. and R.H.  R.H designed the study and assisted in the analysis.  All authors 397 

contributed to the writing. 398 

399 



   

 22  

400 



   

 23  

 401 

References 402 

1. Beddington JR, Agnew DJ, & Clark CW (2007) Current Problems in the 403 

Management of Marine Fisheries. Science 316:1713-1716. 404 

2. Murawski SA (2010) Rebuilding depleted fish stocks: the good, the bad, and, 405 

mostly, the ugly. ICES J. Mar. Sci. 67(9):1830-1840. 406 

3. Burkenroad MD (1953) Theory and practice of marine fishery management. 407 

Journal du Conseil. Conseil International pour l'Exploration de la Mer 18:300-408 

310. 409 

4. Burkenroad MD (1946) Fluctuations in abundance of marine animals. Science 410 

103:684-686. 411 

5. Cushing D (1982) Climate and Fisheries (Academic Press, London) p 373. 412 

6. Gilbert DJ (1997) Towards a new recruitment paradigm for fish stocks. Can. J. 413 

Fish. Aquat. Sci. 54:969-977. 414 

7. Mullon C, Freon P, & Cury P (2005) The dynamics of collapse in world fisheries. 415 

Fish and Fisheries 6(2):111-120. 416 

8. Mantua NJ & Hare SR (2002) The Pacific decadal oscillation. Journal of 417 

Oceanography 58(1):35-44. 418 



   

 24  

9. Shelton PA, Sinclair AF, Chouinard GA, Mohn R, & Duplisea DE (2006) Fishing 419 

under low productivity conditions is further delaying recovery of Northwest 420 

Atlantic cod (Gadus morhua). Can. J. Fish. Aquat. Sci. 63:235-238. 421 

10. Rothschild B (2007) Coherence of Atlantic cod stock dynamics in the Northwest 422 

Atlantic ocean. Trans. Am. Fish. Soc. 136:858-874. 423 

11. Hilborn R & Litsinger E (2009) Cause of Decline and Potential for Recovery of 424 

Atlantic Cod Populations. The Open Fish Science Journal 2:32-38. 425 

12. Wu JG & Loucks OL (1995) From balance of nature to hierarchical patch 426 

dynamics: A paradigm shift in ecology. Quarterly Review of Biology 70(4):439-427 

466. 428 

13. Hilborn R (2007) Defining success in fisheries and conflicts in objectives Mar. 429 

Pol. 31:153-158. 430 

14. Gulland JA (1983) Fish stock assessment: a manual of basic methods. (John 431 

Wiley & Sons, New York) p 223 p. 432 

15. Myers RA, Rosenberg AA, Mace PM, Barrowman N, & Restrepo VR (1994) In 433 

search of thresholds for recruitment overfishing. ICES J. Mar. Sci. 51:191-205. 434 

16. Myers RA & Barrowman NJ (1996) Is fish recruitment related to spawner 435 

abundance? Fish. Bull. 94:707-724. 436 

17. Hilborn R (2001) Calculation of biomass trend, exploitation rate, and surplus 437 

production from survey and catch data. Can. J. Fish. Aquat. Sci. 58(3):579-584. 438 



   

 25  

18. Worm B, et al. (2009) Rebuilding Global Fisheries. Science 325:578-585. 439 

19. Ricard D, Minto D, Jensen OP, & Baum JK (2011) Examining the knowledge 440 

base and status of commercially exploited marine species with the RAM Legacy 441 

Stock Assessment Database. Fish and Fisheries 13:380-398. 442 

20. Caddy JF & Gulland JA (1983) Historical patterns of fish stocks. Mar. Pol. 7:267-443 

278. 444 

21. Hilborn R (2010) Pretty Good Yield and exploited fisheries. Mar. Pol. 34:193-445 

196. 446 

22. Parma AM (1990) Optimal harvesting of fish populations with non-stationary 447 

stock-recruitment relationships. Natural Resource Modeling 4(1):39-77. 448 

23. Walters C & Parma AM (1996) Fixed exploitation rate strategies for coping with 449 

effects of climate change. Can. J. Fish. Aquat. Sci. 53:148-158. 450 

24. A'Mar ZT, Punt AE, & Dorn MW (2009) The impact of regime shifts on the 451 

performance of management strategies for the Gulf of Alaska walleye pollock 452 

(Theragra chalcogramma) fishery. Can. J. Fish. Aquat. Sci. 66(12):2222-2242. 453 

25. A'Mar ZT, Punt AE, & Dorn MW (2009) The evaluation of two management 454 

strategies for the Gulf of Alaska walleye pollock fishery under climate change. 455 

ICES J. Mar. Sci. 66(7):1614-1632. 456 

26. Lehodey P, Bertignac M, Hampton J, Lewis A, & Picaut J (1997) El Nino 457 

Southern Oscillation and tuna in the western Pacific. Nature 389(6652):715-718. 458 



   

 26  

27. Parsons LS & Lear WH (2001) Climate variability and marine ecosystem 459 

impacts: a North Atlantic perspective. Progress in Oceanography 49(1-4):167-460 

188. 461 

28. Soutar A & Isaacs JD (1974) Abundance of pelagic fish during the 19th and 20th 462 

centuries as recorded in anaerobic sediment off the Californias. Fish. Bull. 463 

72(2):257-274. 464 

29. Peterman RM, Pyper BJ, Lapointe MF, Adkison MD, & Walters CJ (1998) 465 

Patterns of covariation in survival rates of British Columbian and Alaskan 466 

sockeye salmon (Oncorhynchus nerka) stocks. Can. J. Fish. Aquat. Sci. 467 

55(11):2503-2517. 468 

30. Schindler DE, et al. (2010) Population diversity and the portfolio effect in an 469 

exploited species. Nature 465(7298):609-613. 470 

31. Mueter FJ, Boldt JL, Megrey BA, & Peterman RM (2007) Recruitment and 471 

survival of Northeast Pacific Ocean fish stocks: temporal trends, covariation, and 472 

regime shifts. Can. J. Fish. Aquat. Sci. 64(6):911-927. 473 

32. Biggs R, Carpenter SR, & Brock WA (2009) Spurious Certainty: How Ignoring 474 

Measurement Error and Environmental Heterogeneity May Contribute to 475 

Environmental Controversies. BioScience 59(1):65-76. 476 

33. Fox WW (1975) Fitting the generalized stock production model by least-squares 477 

and equilibrium approximation. Fish. Bull. 73:23-37. 478 



   

 27  

34. Thorson JT, Cope JM, Branch TA, & Jensen OP (2012) Spawning biomass 479 

reference points for exploited marine fishes, incorporating taxonomic and body 480 

size information. Can. J. Fish. Aquat. Sci. 69(9):1556-1568. 481 

35. Quinn TJ, Jr. & Deriso RB (1999) Quantitative Fish Dynamics (Oxford 482 

University Press, New York) p 542. 483 

36. Rodionov SN (2004) A sequential algorithm for testing climate regime shifts. 484 

Geophysical Research Letters 31(9). 485 

37. Rodionov S & Overland JE (2005) Application of a sequential regime shift 486 

detection method to the Bering Sea ecosystem. ICES J. Mar. Sci. 62(3):328-332. 487 

38. Burnham KP & Anderson DR (2002) Model selection and multi-model inference: 488 

a practical information-theoretic approach (Springer-Verlag, New York). 489 

39. Hobbs NT & Hilborn R (2006) Alternatives to statistical hypothesis testing in 490 

ecology: a guide to self teaching. Ecol. Apps. 16:5-19. 491 

492 



   

 28  

Figure Captions 493 

Figure 1. Surplus production data plotted against model predictions, showing 494 

individual fish stocks best explained by abundance (Atlantic cod in the Kattegat and 495 

Skagerrak panels a-c), regimes (Atlantic cod in Iceland panels d-f), the mixed hypothesis 496 

(Petrale sole from Southern California panels g-i) and random (sole from the Kattegat 497 

and Skagerrak panels j-l).  The first column is the fit under the abundance model, the 498 

second column the fit under the mixed model, and the third column the regimes model, 499 

or, if no breakpoints are found, the random model (panel l).  The area shaded in each pie 500 

diagram shows the AIC weight assigned to each model, so that a pie diagram that is 90% 501 

shaded  indicates that 90% of the AIC weight was assigned to that model.   502 

Figure 2. The frequency distribution of shifts in production. In panel a the shifts 503 

are plotted from -4 to 4 which excludes some extreme values.  In panel b all the shifts are 504 

plotted in the range -20 to 20 and includes all outliers.  505 

506 



   

 29  

Table 1.  The percentage of stocks and number of stocks that are best explained 507 

by each hypothesis and the total AICc weight for each.   508 

 509 

Hypothesis % stocks with 
the highest 

support  

# of stocks best 
supported 

% total AICc 
weight 

% of stocks 
best supported 
after correction 
for estimation 

bias 

Abundance 18.3% 37 16.1% 24% 

Regimes 38.6% 95 41.3% 27% 

Mixed 30.5% 65 28.3% 45% 

Random 12.6% 33 14.3% 4% 

 510 

511 
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Table 2: Probability that a data set generated from a “real” model would be best 512 

explained by each kind of model.   513 

 Best Fit Model 
Real model 
 

Abundance  Regimes Mixed Random  

Abundance  
 

0.54 0.14 0.08 0.24 

Regimes  
 

0.04 0.81 0.11 0.04 

Mixed  
 

0.05 0.33 0.57 0.04 

Random 
 

0.12 0.13 0.04 0.71 

 514 
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